PAIRING ENERGY

- ➤The pairing energy (P) is the energy which is required to pair two electrons in the same orbital against e⁻¹ - e⁻¹ coulombic repulsion.
- For 3d elements, a typical value of P is about 15,000 cm⁻¹.
- ➤ 3d complexes are high spin with weak field ligands and low spin with strong field ligands.
- ➢ High valent 3d complexes (e.g., Co³⁺ complexes) tend to be low spin (large $Δ_0$)

 \geq 4d and 5d complexes are always low spin (large Δ_0).

- Note that high and low spin states occur only for 3d metal complexes with between 4 and 7 delectrons. Complexes with 1 to 3 d-electrons can accommodate all electrons in individual orbitals in the t_{2g} set. Complexes with 8, 9, or 10 d-electrons will always have completely filled t_{2g} orbitals and 2-4 electrons in the e_g set.
- The important result here is that a complex will be low spin if $\Delta_0 > P$, and high spin if $\Delta_0 < P$ because Δ_0 depends on both the metals and the ligands, it determines the spin state of the complex.

What is the Crystal Field Stabilization Energy for a high spin d7 octahedral complex?

 $E_{
m isotropic \ field} = 7 imes 0 + 2P = 2P$

 $E_{ ext{ligand field}} = (5 imes - 2/5 \Delta_o) + (2 imes 3/5 \Delta_o) + 2P = -4/5 \Delta_o + 2P$

$$egin{aligned} CFSE &= E_{ ext{ligand field}} - E_{ ext{isotropic field}} \ &= (-4/5\Delta_o + 2P) - 2P \ &= -4/5\Delta_o \end{aligned}$$

What is the Crystal Field Stabilization Energy for a low spin d7 octahedral complex?

 $E_{
m isotropic \, field} = 7 imes 0 + 2P = 2P$

 $egin{aligned} E_{ ext{ligand field}} &= (6 imes - 2/5 \Delta_o) + (1 imes 3/5 \Delta_o) + 3P \ &= -9/5 \Delta_o + 3P \end{aligned}$

$$egin{aligned} CFSE &= E_{ ext{ligand field}} - E_{ ext{isotropic field}} \ &= (-9/5\Delta_o + 3P) - 2P \ &= -9/5\Delta_o + P \end{aligned}$$

Total d-electrons		Isotropic Field	Octahedral Complex				Crystal Field Stabilization Energy	
			High Spin		Low Spin			
		$oldsymbol{E}_{ ext{isotropic field}}$	Configuration	$oldsymbol{E}_{ ext{ligand field}}$	Configuration	$oldsymbol{E}_{ ext{ligand field}}$	High Spin	Low Spin
d ⁰		0	$t_{2g} 0 e_g 0$	0	$t_{2g}{}^0e_g{}^0$	0	0	0
d1		0	$t_{2g} 1 e_g 0$	-2/5 Δ _o	$t_{2g}{}^1e_g{}^0$	-2/5 Δ _o	-2/5 Δ _o	-2/5 Δ _o
d ²		0	$t_{2g} 2e_g 0$	-4/5 Δ_o	$t_{2g}^{\ \ 2}e_{g}^{\ \ 0}$	-4/5 Δ _o	-4/5 Δ _o	-4/5 Δ _o
d ³		0	$t_{2g} 3 e_g 0$	-6/5 Δ _o	$t_{2g}{}^3e_g{}^0$	-6/5 Δ _o	-6/5 Δ _o	-6/5 Δ _o
d ⁴		0	$t_{2g} 3 e_g 1$	-3/5 Δ _o	$t_{2g}{}^4\!e_g{}^0$	-8/5 Δ_o + P	-3/5 Δ _o	$-8/5 \Delta_o + P$
d ⁵		0	$t_{2g} 3 e_g 2$	$0 \Delta_o$	$t_{2g}{}^5e_{g}{}^0$	-10/5 Δ_o + 2P	0 Δ _o	-10/5 Δ_o + 2P
d ⁶		Р	t_{2g} 4 e_g 2	$-2/5 \Delta_o + P$	$t_{2g}{}^6e_g{}^0$	$-12/5 \Delta_o + 3P$	-2/5 Δ _o	-12/5 Δ_o + P
d ⁷		2P	$t_{2g}5e_g$ 2	-4/5 Δ _o + 2P	$t_{2g}{}^6e_g{}^1$	-9/5 Δ _o + 3P	-4/5 Δ _o	-9/5 Δ _o + P
d ⁸		3P	$t_{2g} 6e_g 2$	$-6/5 \Delta_o + 3P$	$t_{2g}{}^6 e_g{}^2$	-6/5 Δ_o + 3P	-6/5 Δ _o	-6/5 Δ _o
d9		4P	$t_{2g} 6 e_g 3$	$-3/5 \Delta_o + 4P$	$t_{2g}{}^6e_g{}^3$	$-3/5 \Delta_o + 4P$	-3/5 Δ _o	-3/5 Δ _o
d ¹⁰		5P	t_{2g} 6 e_g 4	$0 \Delta_o + 5P$	$t_{2g}{}^6 e_g{}^4$	$0 \Delta_o + 5P$	0	0

Table 1: Crystal Field Stabilization Energies (CFSE) for high and low spin octahedral complexes

Spectrochemical Series

> What is Spectrochemical series and its importance?

The **spectrochemical series** is a convenient way of organizing ligands by field strength. Ligands affect the d electrons of metals, splitting degenerate energy levels into more organized levels of energy. The size of the split is called crystal field splitting parameter and abbreviated Δ .

Spectrochemical Series

Therefore the spectrochemical series is a list of ligands based on the strength of their interaction with metal ions. It is often listed, from weaker to stronger ligands, something like this:

 $|- < Br^- < S^{2-} < SCN^- < Cl^- < NO_3^- < N_3^- < F^- < OH^- < C_2O_4^{2-} < H_2O < NCS^- < CH_3CN < py < NH_3 < en < bipy < phen < NO_2^- < PPh_3 < CN^- < CO$

In which py = pyridine ; en = ethylenediamine; bipy = 2,2'-bipyridine; phen = 1,10-phenanthroline; SCN means the ligand is bound via sulfur and NCS via nitrogen.

Irving-Williams Series

The Irving-Williams Series refers to the relative stabilities of complexes formed by transition metals. According to Irving and Williams , the stability of complexes formed by divalent first-row transition metal ions generally increases across the period to a maximum stability at copper :

Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II).

- The ionic radius is expected to decrease regularly from Mn(II) to Zn(II). This is the normal periodic trend and would account for the general increase in stability.
- The CFSE increases from zero for Mn(II) to a maximum at Ni(II). This makes the complexes increasingly stable. CFSE for Zn(II) is zero.
- Although the CFSE of Cu(II) is less than that of Ni(II), octahedral Cu(II) complexes are subject to the Jahn-Teller effect, which affords octahedral Cu(II) complexes additional stability.

Jahn -Teller Distortion

➤ Jahn -Teller Distortion :

For a non linear molecule in an electronically degenerate state distotion must occur to lower the symmetry, Remove the degeneracy and lower the energy.

- > Types of Jahn -Teller Distortion :
- i. Z-Out Distortion :

When two trans ligands on z-axis may be further away resulting two long bonds along z-axis and four short bonds along xy plane. This distortion is called z-out distortion.

ii. Z-In Distortion :

When two trans ligands on z-axis may be move closing resulting two short bonds along z-axis and four long bonds along xy plane.This distortion is called z-in distortion.

Examples :[Cu(H2O)6]2+ ,CrF2 ,MnF3, [Ti(H2O)6]3+